Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 5433, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686143

RESUMO

The lack of coronavirus-specific antiviral drugs has instigated multiple drug repurposing studies to redirect previously approved medicines for the treatment of SARS-CoV-2, the coronavirus behind the ongoing COVID-19 pandemic. A recent, large-scale, retrospective clinical study showed that famotidine, when administered at a high dose to hospitalized COVID-19 patients, reduced the rates of intubation and mortality. A separate, patient-reported study associated famotidine use with improvements in mild to moderate symptoms such as cough and shortness of breath. While a prospective, multi-center clinical study is ongoing, two parallel in silico studies have proposed one of the two SARS-CoV-2 proteases, 3CLpro or PLpro, as potential molecular targets of famotidine activity; however, this remains to be experimentally validated. In this report, we systematically analyzed the effect of famotidine on viral proteases and virus replication. Leveraging a series of biophysical and enzymatic assays, we show that famotidine neither binds with nor inhibits the functions of 3CLpro and PLpro. Similarly, no direct antiviral activity of famotidine was observed at concentrations of up to 200 µM, when tested against SARS-CoV-2 in two different cell lines, including a human cell line originating from lungs, a primary target of COVID-19. These results rule out famotidine as a direct-acting inhibitor of SARS-CoV-2 replication and warrant further investigation of its molecular mechanism of action in the context of COVID-19.


Assuntos
Famotidina/farmacologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Humanos , SARS-CoV-2/efeitos dos fármacos , Células Vero
2.
J Phys Chem B ; 125(7): 1825-1837, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560844

RESUMO

Cholesterol is a ubiquitous component of mammalian cell membranes and affects membrane protein function. Although cholesterol-mediated formation of ordered membrane domains has been extensively studied, molecular-level structural information about cholesterol self-association has been absent. Here, we combine solid-state nuclear magnetic resonance (NMR) spectroscopy with all-atom molecular dynamics simulations to determine the oligomeric structure of cholesterol in phospholipid bilayers. Two-dimensional 13C-13C correlation spectra of differentially labeled cholesterol indicate that cholesterol self-associates in a face-to-face fashion at membrane concentrations from 17 to 44 mol %. 2D 13C and 19F spin-counting experiments allowed us to measure the average oligomeric number of these cholesterol clusters. At low cholesterol concentrations of ∼20%, the average cluster size is centered on dimers. At a high cholesterol concentration of 44%, which is representative of virus lipid envelopes and liquid-ordered domains of cell membranes, both dimers and tetramers are observed. The cholesterol dimers are found in both phase-separated membranes that contain sphingomyelin and in disordered and miscible membranes that are free of sphingomyelin. Molecular dynamics simulations support these experimental observations and moreover provide the lifetimes, stabilities, distributions, and structures of these nanoscopic cholesterol clusters. Taken together, these NMR and MD data strongly suggest that dimers are the basic structural unit of cholesterol in phospholipid bilayers. The direct observation of cholesterol dimers and tetramers provides a revised framework for studying cholesterol interactions with membrane proteins to regulate protein functions and for understanding the pathogenic role of cholesterol in diseases.


Assuntos
Colesterol , Bicamadas Lipídicas , Animais , Membrana Celular , Simulação de Dinâmica Molecular , Esfingomielinas
3.
J Mol Biol ; 432(7): 1978-1995, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32035904

RESUMO

Serum amyloid A (SAA) is a plasma protein that transports lipids during inflammation. To explore SAA solution conformations and lipid-binding mechanism, we used hydrogen-deuterium exchange mass spectrometry, lipoprotein reconstitution, amino acid sequence analysis, and molecular dynamics simulations. Solution conformations of lipid-bound and lipid-free mSAA1 at pH~7.4 agreed in details with the crystal structures but also showed important differences. The results revealed that amphipathic α-helices h1 and h3 comprise a lipid-binding site that is partially pre-formed in solution, is stabilized upon binding lipids, and shows lipid-induced folding of h3. This site sequesters apolar ligands via a concave hydrophobic surface in SAA oligomers. The largely disordered/dynamic C-terminal region is conjectured to mediate the promiscuous binding of other ligands. The h1-h2 linker region is predicted to form an unexpected ß-hairpin that may represent an early amyloidogenic intermediate. The results help establish structural underpinnings for understanding SAA interactions with its key functional ligands, its evolutional conservation, and its transition to amyloid.


Assuntos
Fosfatidilcolinas/metabolismo , Conformação Proteica , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Animais , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Dobramento de Proteína
5.
J Chem Phys ; 150(20): 204702, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153187

RESUMO

The separation of lipid mixtures into thermodynamically stable phase-separated domains is dependent on lipid composition, temperature, and system size. Using molecular dynamics simulations, the line tension between thermodynamically stable lipid domains formed from ternary mixtures of di-C16:0 PC:di-C18:2 PC:cholesterol at 40:40:20 mol. % ratio was investigated via two theoretical approaches. The line tension was found to be 3.1 ± 0.2 pN by capillary wave theory and 4.7 ± 3.7 pN by pressure tensor anisotropy approaches for coarse-grained models based on the Martini force field. Using an all-atom model of the lipid membrane based on the CHARMM36 force field, the line tension was found to be 3.6 ± 0.9 pN using capillary wave theory and 1.8 ± 2.2 pN using pressure anisotropy approaches. The discrepancy between estimates of the line tension based on capillary wave theory and pressure tensor anisotropy methods is discussed. Inclusion of protein in Martini membrane lipid mixtures was found to reduce the line tension by 25%-35% as calculated by the capillary wave theory approach. To further understand and predict the behavior of proteins in phase-separated membranes, we have formulated an analytical Flory-Huggins model and parameterized it against the simulation results. Taken together these results suggest a general role for proteins in reducing the thermodynamic cost associated with domain formation in lipid mixtures and quantifies the thermodynamic driving force promoting the association of proteins to domain interfaces.

6.
Proc Natl Acad Sci U S A ; 115(39): E9041-E9050, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30190430

RESUMO

Gold nanoparticles (NPs) wrapped in a membrane can be utilized as artificial virus nanoparticles (AVNs) that combine the large nonblinking or bleaching optical cross-section of the NP core with the biological surface properties and functionalities provided by a self-assembled lipid membrane. We used these hybrid nanomaterials to test the roles of monosialodihexosylganglioside (GM3) and phosphatidylserine (PS) for a lipid-mediated targeting of virus-containing compartments (VCCs) in macrophages. GM3-presenting AVNs bind to CD169 (Siglec-1)-expressing macrophages, but inclusion of PS in the GM3-containing AVN membrane decreases binding. Molecular dynamics simulations of the AVN membrane and experimental binding studies of CD169 to GM3-presenting AVNs reveal Na+-mediated interactions between GM3 and PS as a potential cause of the antagonistic action on binding by the two negatively charged lipids. GM3-functionalized AVNs with no or low PS content localize to tetherin+, CD9+ VCC in a membrane composition-depending fashion, but increasing amounts of PS in the AVN membrane redirect the NP to lysosomal compartments. Interestingly, this compartmentalization is highly GM3 specific. Even AVNs presenting the related monosialotetrahexosylganglioside (GM1) fail to achieve an accumulation in VCC. AVN localization to VCC was observed for AVN with gold NP core but not for liposomes, suggesting that NP sequestration into VCC has additional requirements beyond ligand (GM3)-receptor (CD169) recognition that are related to the physical properties of the NP core. Our results confirm AVN as a scalable platform for elucidating the mechanisms of lipid-mediated viral entry pathways and for selective intracellular targeting.


Assuntos
Gangliosídeo G(M3)/metabolismo , Ouro , Macrófagos/metabolismo , Membranas Artificiais , Nanopartículas Metálicas , Fosfatidilserinas/metabolismo , Internalização do Vírus , Vírus/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/virologia , Macrófagos/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Tetraspanina 29/metabolismo
7.
J Chem Phys ; 147(9): 095101, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886648

RESUMO

Model cellular membranes are known to form micro- and macroscale lipid domains dependent on molecular composition. The formation of macroscopic lipid domains by lipid mixtures has been the subject of many simulation investigations. We present a critical study of system size impact on lipid domain phase separation into liquid-ordered and liquid-disordered macroscale domains in ternary lipid mixtures. In the popular di-C16:0 PC:di-C18:2 PC:cholesterol at 35:35:30 ratio mixture, we find systems with a minimum of 1480 lipids to be necessary for the formation of macroscopic phase separated domains and systems of 10 000 lipids to achieve structurally converged conformations similar to the thermodynamic limit. To understand these results and predict the behavior of any mixture forming two phases, we develop and investigate an analytical Flory-Huggins model which is recursively validated using simulation and experimental data. We find that micro- and macroscale domains can coexist in ternary mixtures. Additionally, we analyze the distributions of specific lipid-lipid interactions in each phase, characterizing domain structures proposed based on past experimental studies. These findings offer guidance in selecting appropriate system sizes for the study of phase separations and provide new insights into the nature of domain structure for a popular ternary lipid mixture.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Modelos Químicos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Termodinâmica
8.
J Comput Chem ; 38(16): 1479-1488, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27761918

RESUMO

For 40 years, the existence and possible functional importance of cholesterol dimer formation has been discussed. Due to challenges associated with structural studies of membrane lipids, there has as yet been no direct experimental verification of the existence and relevance of the cholesterol dimer. Building on recent advances in lipid force fields for molecular simulation, in this work the structure and stability of the cholesterol dimer is characterized in POPC bilayers in absence and presence of sphingomyelin. The cholesterol dimer structural ensemble is found to consist of sub-states that reflect, but also differ from, previously proposed dimer structures. While face-to-face dimer structures predominate, no evidence is found for the existence of tail-to-tail dimers in POPC lipid bilayers. Near stoichiometric complex formation of cholesterol with sphingomyelin is found to effect cholesterol dimer structure without impacting population. Comparison with NMR-derived order parameters provide validation for the simulation model employed and conclusions drawn related to the structure and stability of cholesterol dimers in multicomponent lipid bilayers. © 2016 Wiley Periodicals, Inc.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Dimerização , Modelos Teóricos , Conformação Molecular , Esfingomielinas/química
9.
J Phys Chem Lett ; 7(18): 3535-41, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525349

RESUMO

Recent NMR chemical shift measurements of the 99 residue C-terminal fragment of amyloid precursor protein (APP-C99) in the presence of cholesterol provide evidence of binary complex formation between C99 and cholesterol in membrane mimetic environments. It has also been observed that the production of Aß protein is enhanced under conditions of high cholesterol concentration. In this study, we investigated the impact of the charge state of C99 on the structure and stability of the C99-cholesterol complex. We observed that the binding of C99 to cholesterol depends critically on the charge state of Glu 693 (E22) and Asp 694 (D23). Evaluation of the pKa values of the Asp and Glu side chains suggests that these residues may be predominantly neutral in existing experimental observations of a stable C99-cholesterol complex at lower pH (characteristic of the endosomal environment), while binding is destabilized near neutral pH (characteristic of the cytoplasm). These observations suggest that specific binding of cholesterol to C99 is a sensitive function of the pH encountered in vivo, with key E22 and D23 residues serving as a "pH switch" controlling C99-cholesterol binding.


Assuntos
Precursor de Proteína beta-Amiloide/química , Colesterol/química , Bicamadas Lipídicas/química , Proteínas/química , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...